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Group theoretical techniques on phase space and the 
calculation of quantum mechanical propagators 
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Department of Mathematics, LaTrobe University, Bundoora, 3083 Victoria, Australia 

Received 31 March 1989 

Abstract. I t  is shown by considering the representation of the Lie group Sp(ZN, R ) @  N(  N )  
on the phase space associated with standard ordering that the calculation of the quantum 
mechanical propagator for a general N-dimensional system with Hamiltonian quadratic 
in the position and momentum variables may be reduced to the calculation of the propagator 
for a ‘free particle’. 

1. Introduction 

Recently there has been renewed interest in Lie algebraic methods for studying the 
time evolution of quantum mechanical systems with Hamiltonians which are linear in 
the generators of the Lie algebras. The majority of these methods are based on the 
use of suitable disentanglement theorems of the Baker-Campbell-Hausdorff ( B C H )  

type (Wilcox 1967, Traux 1985) and, in particular, on the so-called Wei-Norman ( W N )  

algebraic approach ( Wei and  Norman 1963). This approach involves the representation 
of the elements of a Lie group as an ordered product of exponentials, each containing 
only single generators of the group. These methods have been used to obtain the time 
evolution operator for a number of systems. Dattoli et a1 (1986a) have applied this 
technique to the harmonic oscillator with time-dependent frequency, as well as for a 
number of other systems with Hamiltonians that are linear combinations of the 
generators of certain lower-dimensional Lie algebras (Dattoli et a1 1986a, b, c, 1987). 
Furthermore, Wolf and  Korsch (1988) and  Prants (1986) have derived the time 
development for two-dimensional quadratic parametric processes. Wang (1987) has 
used BCH formulae to calculate the spacetime propagator for a number of one- 
dimensional time-independent systems where the Hamiltonians were quadratic func- 
tions of the position and  momentum coordinates. An interesting point of Wang’s paper 
was that the calculation of such propagators could be reduced to that of a free-particle 
type of propagator by purely algebraic means. However, the method used by Wang 
does not generalise to higher dimensions or to time-dependent systems, and  such a 
generalisation is by no means trivial. For higher-dimensional problems all of the above 
methods suffer from the difficulty that the BCH type formulae, as well as the result of 
the substitution of an already factorised exponential operator into the Schrodinger 
equation, become extremely difficult to calculate explicitly. 

The main purpose of this paper is to generalise the result of Wang to higher- 
dimensional time-dependent quadratic systems, i.e. we show that the calculation of 
the propagator for such systems can be reduced to that of a free-particle type of 
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propagator. The results suggest that a similar result may be achievable in the path 
integral calculation of propagators for these types of systems (for examples of the path 
integral calculations for certain of these systems see Cheng (1984, 1986)). 

We note that the propagator for such systems has been obtained previously, by a 
method based on the eigenstates of linear time dependent invariants, in a paper by 
Dodonov et a1 (1975), which does not seem to be widely known. Less general results 
have been given by Tikochinsky (1977), Davies (1989,  Kokiantonis and Castrigiano 
(1985) and Nassar and Berg (1986). However, the method used here is different, and 
furthermore the result is generated by showing that the problem of finding the propa- 
gator for a general N-dimensional quadratic system can be reduced, by algebraic 
means, to finding the propagator for the system with Hamiltonian 

(1.1) 

where p* = ( F l ,  $,, . . . , E N )  and A( t )  is an N x N symmetric matrix and T denotes the 
transpose. The propagator for this system is easily calculated. First, if  N = 1 the result 
is well known (Suzuki 1983): 

io( t )  = p*TA( t)p* 

K F ( A ( t ) ;  xh, t ;  xa,  0) -(Xhlexp(-(i/h)A(t)F2)lxa) 

where lxa)  and Ixh) denote eigenstates of 4. The result in N dimensions then follows 
by diagonalising A( t )  and using (1.2): 

K, (A( t ) ;  -%, t ;  %, 0) 

= (x,,lexp(-(i/ h)bTA(t)p*lx,) 

= (4.rrih det A( t ) ) - ”2  exp - [ ( x b  -xa )TA( f ) - I (xh  - & ) I  . (1.3) 

We note another important point of the present work, namely that for systems for 
which the Hamiltonian is a homogeneous quadratic function of the position and 
momentum variables, the propagator may be written entirely in terms of 2 N solutions 
of the corresponding classical system, and furthermore that this is also the case for 
time evolution operators of all such one-dimensional quadratic systems. This gen- 
eralises a result recently obtained by Fernandez (1987) for the time development 
operator for the system with Hamiltonian H = a ( t ) $ 2 + P ( t ) 4 2 .  

It is well known that the Hamiltonian of a general N-dimensional quadratic system 
is a linear combination of the generators of the Lie group Sp(2N, R ) O N (  N ) ,  i.e. the 
semidirect product of the semisimple simplectic group Sp(2N, R )  and the nilpotent 
group N(N) .  The method of approach adopted here is to use the phase space 
representation associated with the so-called standard ordering (Agarwal and Wolf 
1970) of the Lie group Sp(2N, R ) O  N( N )  and its algebra. The phase space representa- 
tion of the group Sp(2N, R ) O N ( N )  and the corresponding Lie algebra are described 
in § 2 and algebraic phase space techniques are used to deduce the group multiplication 
law on the phase space. 

In § 3 it is shown that one may work within the phase space in a purely algebraic 
manner to calculate the standard ordered form of the unitary time development 
operator. The standard method for finding the phase space representation of time 
development operators (usually in the phase space associated with normal or antinormal 

(ifi ) 
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ordering) is to solve the phase space form of the Schrodinger equation for the time 
development operator (Louise11 1973, Agarawal and Wolf 1970, Howard and Roy 
1987). This method has the disadvantage that it generates non-linear differential 
equations, which are to be compared with the (linear) classical equations of motion 
generated by the method described here. In 5 3 we apply the results obtained to the 
reduction of the propagator for such systems. 

2. Group theory on phase space 

The Hamiltonian of a general N-dimensional quadratic system is given by 

\ 

+ c , ~  ( r ) 4, & ) + C ( d, ( t )iI + e, ( f ) 4, + f (  t (2.1) 
\ = I  

where q k ( t ) ,  b J k ( t )  and c J k ( t )  are real N x N matrices, with a ( ( )  and c ( t )  being 
symmetric, and d, (r ) ,  e , ( t )  and f ( t )  are real functions. The Hamiltonian (2.1) is a 
linear combination of the set of operators 

{?,:k, ( i j ,P^L+P*k( i j ,  ( i i ( i k 9  41, I} 

where j ,  k = 1, .  . . , N and I is the identity operator. This set of operators gives a 
realisation of the Lie algebra sp(2N, R)@n(  N ) .  This algebra is the semidirect product 
of the semisimple symplectic algebra sp(2N, R ) ,  which is realised by the quadratic 
operators in the above set, and the radical n( N ) ,  realised by { q , ,  p , ,  I } ,  j = 1, . . . , N. 

We now consider the representation of the Lie algebra sp(2N, R)@n(  N) in phase 
space and, in particular, in the phase space associated with standard ordering (Agarwal 
and Wolf 1970). Here we introduce the phase space representation in a purely algebraic 
y a y  as follows. To obtain the phase space representation of an operator function 
F ( $ , $ )  (all operators are assumed to have power series expansion in p̂  and (i), replace 
the operators (i and p* by the corresponding c-number variables q and p ,  which define 
the phase space, and replace operator multiplication by the * product which is defined 
to be associative and satisfy the following relations: 

P ,  * q ,  = q , P ,  - i hs,, (2.2) 

41 * P, = 9tPl ( 2 . 3 )  

f (49 P) * PI P)Pl (2.4) 

91 * f ( q , P ) = q t f ( q , P )  (2.5) 

c * f ( 4 ,  P) = f (4 ,  P) * c = cf(4, P) (2.6) 

where i, j = 1,. . . , N, f (q ,  p )  is any function on the phase space and c is any constant 
fynction on the phase space. Through this procedure and use of (2.2)-(2.6), an operator 
F ( $ , b )  may be reduced to a c-number function F ( q , p ) ,  the standard ordered 
representative of f ( $ , $ ) ,  on the phase space. From ( 2 . 2 ) - ( 2 . 6 )  it  can be readily 
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We then find that the phase space functions 

{PJPA, q,Pk+(ifi/2)6,A, qjqk? qh, PA? 

form a representation of the Lie algebra sp(2N, R ) O n ( N )  under the * product. 
To re-obtain an operator p(q*, p^)  from its phase space representative we simply use 

the rules (2.2)-(2.6) in the reverse order. That is, we replace all products between q 
and p by * products, using (2.2)-(2.6), and then replace q, and p ,  by $, and p*,, 
respectively. By (2.2)-(2.6) this procedure is equivalent to writing F ( q , p )  in such a 
way that in every product all the q are to the left of all the p and then replacing qj 
and p ,  by 4, and p* , ,  respectively. We denote this operator by 9: 

m , p * ) = 9 { F ( 9 , P ) ) .  (2.10) 

We now consider the representation of the group operators on the phase space. 
The above realisation of the Lie algebra sp(2N, R ) O n (  N ) ,  in terms of the operators 
$,$, f and their bilinear products, generates a unitary representation of the Lie group 
Sp(2N, R ) @  N (  N ) ,  a general element of which can be written as 

C ( A ,  B, C, D, ~ , ~ ) = e x p  - ( q * T ~ q * + q * T ~ p + b T ~ T i + ~ T ~ ~ + ~ T q * + ~ T b + ~ ~ j )  . 

Using the parameter differentiation method of Wilcox (1967) it can be shown that 6 
can be written in the partially factorised form 

( b  1 

x exp (i ( q * ~ T b  + i + ~ T T T ~ ) )  exp (t ( f i ~ y b  +  ET^)) . (2.1 1) 

The rel3tionship between the group parameters A , .  , . , O and a , .  . . , 4 does not concern 
us here. The representation of this general element in the phase space is then obtained 
by the use of the prescription described above as well as the result (AS) of the appendix. 
The result is 

U(a ,P ,  Y ,  6, ~ , d ~ ) = e x p ( k f ~ / f i ) D ( 6 ,  & ) S ( a , P ,  Y )  (2.12) 

where 

and p T  = exp(2r). 
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For completeness we now calculate the group multiplication law with the use of 
phase space methods. The functions S( CY, P, y )  form the phase space representation 
of the group Sp(2N, R ) ,  so we first calculate the group multiplication law for this 
group. We first calculate the effect of the phase space operators S on the functions p 
and q. We have, using (2.8) and (2.9), 

d S  
~ ' ( a ,  P, y )  * ~ ( a ,  P, y )  = S-  * s * q,  + ihS' * - 

dP, 
(2.15) 

where St denotes the phase space representative of the operator 3 with 3 = Y{S}.  
Along with (2.14), (2.15) then gives 

S- * q * S = p -1q - 2p - 1  yp. (2.16) 

In a similar way using (2 .8) ,  (2.14) and (2.16) we obtain 

S L * p  * S=(pT-4CYP-IY)p+2CYP-Iq. (2.17) 

Applying both sides of the relation 

S(a7, P 3 ,  Y 3 )  = S(QI, PI 7 Y l )  * S ( a 2 ,  PZ, Y J  (2.18) 

to p, and q,  comparing we find that 

PT = P J  I - 4 ~ 1  .?)- 'PI (2.19a) 

(2.19b) 

( 2 . 1 9 ~ )  

Equation (2.18), together with (2.191, constitute the group multiplication law for the 
group Sp(2N, R )  on the phase space. To obtain the full group multiplication law we 
use the following simply derived consequences of (2.8) and (2.9): 

and 

exp (i 6 T q )  * p, * exp ( -; 6 ' 4 )  = p, - 6, 

( 2 . 2 0 ~  j 

(2.20b) 

The full group multiplication law now follows by collapsing the * product in 

U ( & , ,  P3,  Y 3 ,  8 3 ,  E , ,  43) 

= ~ ( f f , , P , , Y , , ~ , , ~ l , ~ l ) *  U ( a , , P , , r 2 , 8 2 , & 2 , 4 2 )  (2.21) 

using (2.18)-(2.20). The result is 

43 = 4, + 4 2 -  6 1 E l  + 6;y162+ €:CYz&, 

6, = 6 ,  + 62 - 2eJaz + s;(p2 - I )  

( 2 . 2 2 ~ )  

(2.226) 

(2.22c) E3 = E ,  + E *  -26Iy ,  + &, (P I -  I )  
along with (2.19). 
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3. Algebraic calculation of the phase space representation of c(t) 

We first calculate the phase space representation of the time evolution operator. The 
usual method for calculating the phase space representatives (usually in the phase 
space associated with normal or antinormal ordering) of time evolution operators is 
to solve the phase space form of the Schrodinger equation for the operator U (  t ) ,  i.e. 

In the case of standard ordering, (3.1) takes the form 

U ( 0 )  = 1 (3.2) 
au 

ih-= H ( t )  * U 
a t  

where * was defined in the previous section. Equation (3.2) is then solved by assuming 
U has a particular form (Louise11 1973). The main difficulty with this approach is that 
it generates non-linear differential equations. Here we use an algebraic method on the 
phase space similar to ;he one used in the previous section to calculate the phase space 
form of the operator U ( t ) .  

In the Heisenberg picture the position and  momentum operatos $, and $, must 
satisfy the equations of motion: 

i h j ,  = [G,, A(t)l  (3.3) 

i h j j  = [ i j ,  A(t )] .  (3.4) 
Using (2.2)-(2.6) these equations become 

in the phase space. We note that (3.5) and (3.6) are Hamilton's equations of motion 
with a 'classical' Hamiltonian H ( t ) .  With A ( t )  given by (2.1), with d, = e, = f = O ,  
j = 1, .  . . , N (non-zero values of these functions will be considered later), we find 

N V  N 

H ( t ) =  1 ( ~ j A ( t ) P j p , + 2 b j k ( t ) p h q , + c , h ( f ) q , q k ) - i ~  b,,(t)* (3.7) 
, = I  A = I  , = I  

This is the classical Hamiltonian for the system (2 .1) .  The complex term does not 
affect the equations of motion and so is of no consequence. With (3.7), (3.5) and (3.6) 
then become 

and  

( 3 . 8 ~  

(3.8b 

Given the initial conditions q,(O) and p , ( O ) ,  the solution of (3.8) is well known to exist 
and be unique. We write this solution in the form 

(3.9) 

(3.10) 
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where Q: , P: and Q:, P f , j  = 1 , .  . . , N, are the 2 N unique classical solutions satisfying 
the initial conditions [ Q;lk = [ P ; l k  = 0 and - [ @ ] A  = [ P ; l k  = &. For convenience we 
define the matrices 

[ 1 1 / 1 , k  = [ Q ; ] A  (3.11) 

[M/l,k = [P:lk (3.12) 

where I = 1 ,2  and j ,  k = 1, .  . . , N. It  may be verified that 

M,( t)'4:( t )  - .4'( t ) M Y (  t )  = I N  (3.13) 

for all time, the right-hand side denoting the N x N identity matrix. 
We now use (3.7) and (3.8) to calculate the phase space representative of i r ( t )  for 

this system algebraically. Supeose that U ( t )  is of the form (2.14) and U ' ( t )  is the 
phase space representative of U - (  t )  so that 

U " ( r ) *  U ( r ) = U ( t ) *  U ( t ) = l .  (3.14) 

To find U ( r )  we now just calculate U - ( t )  * q, * U ( t )  and U ' ( t )  * p ,  * U ( r )  and 
In what follows we do not need the explicit form of U'(?); we need only (3.14). 

compare with (3.9) and (3.10). Using (2.8) and (2.14) we find 

au 
( t )  * U ( t )  * q , + i h U ( t )  * -  

aP, 
q , ( t )  = ~ ' ( t )  * q, * ~ ( t )  = 

N 

or in matrix notation we obtain 

q ( t )  = p- lq  - 2 p - l ~ ~ .  (3.16) 

In a similar way we obtain, using (3.161, 

P ( 0  = P T P + 2 f f 9 ( f )  

= ( p  - 4 a p  - I  y)p + 2ap- 'g.  (3.17) 

Comparing (3.16) and (3.17) with (3.9) and (3.10) we find 

p = -.I;' LY =$Mziil' y = 1 21 i - ' A  2 I '  (3.18) 

By considering the differential equations satisfied by A and M and the corresponding 
initial conditions it may be checked that a and y defined by (3.18) are indeed symmetric. 
Furthermore, by using (3.13) and the symmetry of a and y we find P T - 4 a P - ' y  = MI. 
Hence the phase space representative of the time development operator D ( t )  is 

U (  t )  = (- 1) "'(det A.)-''' exp ( {!pT,li'Al p - qT[ 1 + (Al)- ']p + $qM2A;'q]) (3.19) 

and so using (2.13) and (2.15) we have 

D ( f )  = (-l)"/'(det A2)-"2 exp(& qMzA; 'q  

h 

1 

(3.20) 
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We look at  some interesting special cases of (3.20). For the one-dimensional case 
where Q,,2 and PI,> are a pair of classical solutions for the 

system, i.e. 
= Q1,* and  MI,* = 

01.2 = 2IQ(t)Pl,2+ b(r)Q, ,A  
pi,* = -2{b(t)Pi,z+c(r)Qi.z} 

satisfying the initial conditions Ql(0) = P2(0) = 0 and  -Qz(0) = P,(O) = 1. In this case 
we may invert the transformation (2.10) to obtain O ( t )  as a product of exponentials 
of the original operator algebra: 

(3.21) 

This is a generalisation of a result given recently by Fernandez (1987) who showed 
how to write the time evolution operator for the system with Hamiltonian H ( t )  = 
a (  t ) p 2 +  c ( r ) q 2  in terms of two classical solutions. 

If the Hamiltonian is independent of time then, in general, O ( t )  is given by 

in terms of 2 N  classical solutions (apart from a time derivative in the second factor). 
It is interesting to note here that the above results imply that the Schrodinger 

equation for systems described by Hamiltonians of the form (2.1) with d, = e, = f = O ,  
i.e. 

a 
ih ; l i ( r ) )=  @ r ) l i ( O )  

may be transformed to the free-particle form: 

a d 
a t  dr 

ih - / 4 (  t ) )  = isT - (,~;',i~ )j?l4( t ) )  

by the transformation 

I $ ( [ ) ) =  (-l)""(det . \ 2 ) -1 '2  exp 

For example, the simple harmonic oscillator described by the Hamiltonian 
fi =fg+;mw-q-  7 7  

can be transformed into the system described by the Hamiltonian 

A 1  
H = - sec'( w t ) i '  

2m 

via the transformation 

(3.23) 

(3.24) 

(3.25) 
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4. Reduction of the propagator to free-particle form 

Now consider the reduction of the propagator for the system with Hamiltonian (3 .7)  
to that of a free-particle system. The propagator is obtained from 

K ( X h ,  f ;  xo, O) (xhl f i ( i 3  $9 t ) l x o )  (4.1) 

where o(i,$, t )  is given by (3 .20) .  Since (3.20) is ordered so that all the $, are to the 
left of all the ij we have 

K ( X h r  t ;  %, 0) 

= ( ~ b l f i ( % ~ $ ~  t ) l x o )  

I 
= (-l)”’(det eXp (& XlM2A;lXh 

Using the identity 

i 
(xb\exp( - h A T p ) = l s h - A )  (4 .3 )  

we finally obtain 

(4 .4)  

The explicit form of the propagator can be written down using the expression for K F  

in § 1. We notice from the explicit form of the propagator that no difficulty arises 
when det A2 = 0, provided that A2 is not identically zero. However, in this case the 
standard ordered form of the operator fi(i,$, t )  fails to exist, and so the propagator 
should be checked at these points by direct substitution in the Schrodinger equation 
for the propagator. 

We finally consider the case in which linear terms also appear in the Hamiltonian, 
that is, d(  t ) ,  e ( t )  a n d f (  t )  are non-zero. In this case the ‘classical’ equations of motion 
on the phase space are 

(4 .5)  

1 
K ( X h ,  t ;  X,, O)=(-l)”‘(det A’)-”’exp -x:MzA;‘xb 

( 2 h  

x K ~ ( - $ A i ’ j d l ;  A y ’ X h ,  t ;  X,, 0). 

4 (  t )  = 2a(  r ) p  + 26(  t ) q  + e(  t )  

and 

p(r) = -2b( t ) p  - 2 4  t ) q  - d( t ) .  

The solution to these equations is given by 

(4.6) 

q (  t ) = A , p ( 0 )  - A2q(0)  - Ar ( M :e( f ) - A:d( t ) ) d t + A,  
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(4.8) 

where A I , *  and are given by (3.1 1) and (3.12) with Q: , Pj' and Qf , Pf , j = 1, , . . , N, 
being 2 N solutions for the classical system with Hamiltonian (3.7) satisfying the initial 
conditions [ @ I k  = [P:jk = 0 and -[QfIk = [P:Ik  = Taking the phase space rep- 
resentative of the unitary time development operator to have the form (2.12) we find 
in a similar way to (2.16) and (2.17) that 

U'(r)  * q *  I / ( t )=p - 'q -2p- 'yp -p - '&  (4.9) 

and 

U'( t )  * p * U (  t )  = (pT-4ap- 'y )p  + 2 a p - ' q  - 2 a p - ' E  - 6. (4.10) 

Comparing (4.7) and (4.8) with (4.9) and (4.10) we find that cy, p and y are given by 
(3.18) and E and 6 are given by 

E = - J o l ( M y e ( t ) - A y d ( t ) )  dt+A,A, ( M T e ( t ) - A : d ( t ) )  dt  (4.11) 

and 

Finally we must calculate the phase term 4. In  order to do this we substitute U ( t )  
into the phase space form of the Schrodinger equation for the time development 
operator: 

au(t) 
a t  

iA-=H(t)* U ( r )  (4.13) 

with U ( 0 )  = 1. Using 

U * p * U'= p-IT( p + 2 a q +  6 )  (4.14) 

which can be obtained in a similar way to (3.16), we obtain 
r1 

4 =  (i3Ta(t)6-e(r)6+f(t))  d t  J o. (4.15) 

where 6 is given by (4.12). The propagator may then be reduced to the free-particle 
type as above, giving 

K ( X b ,  t ;  x,, 0) 

X K F ( - $ A ; ' A I ;  -A;'Xh-&, f ; X , , O )  

where E, 6 and 4 are given by (4.11), (4.12) and (4.15). 

(4.16) 
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5. Conclusion 

By considering the representation of the group Sp(2N, R ) O N ( N )  on the quantum 
mechanical phase space associated with standard ordering, we have shown that the 
calculation of the propagator for a system driven by a general time-dependent Hamil- 
tonian quadratic in the position and momentum operators could be reduced to the 
calculation of the propagator for the ‘free-particle’ system with Hamiltonian (1.1). 
Furthermore, the calculation was carried out in a purely algebraic manner. Another 
important result of this paper is that the propagator for a purely quadratic time- 
dependent system can be written entirely in terms of 2 N  solutions to the corresponding 
classical system. 

In this paper we have also shown that the use of group theory on phase space can 
simplify phase space calculations. For example, the usual calculation of the phase 
representative of time development operators U, which involves substitution of an 
assumed form for the representative in the phase space form of the Schrodinger equation 
for fi, gives a set of non-linear differential equations, whereas the algebraic method 
used in this paper involves only the solution of a set of linear equations-the classical 
equations of motion. 

Appendix 

In this appendix we calculate the phase space representative of the operator 

by use of the parameter differentiatio! method of Wilcox (1967) in conjunction with 
phase space methods. The operator F (  A )  satisfies the differential equation 

with the initial condition P ( 0 )  = I .  Using (2.8) and (2.9), (A2) implies that the phase 
space representative of F( A ) satisfies 

w - 2 q T ~ V y F ( A )  =- 2i qT7pF(A) 
a h  A 

with F ( 0 )  = 1. Solving (A3) we find 

[qT(exp(2Ar) - Z ) p ]  

Setting A = 1 we obtain the result used in Is 2: 

where pT = exp(27) 
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